Quantitative property A, Poincaré inequalities, L p -compression and L p -distortion for metric measure spaces

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantitative property A , Poincaré inequalities , L p - compression and L p - distortion for metric measure spaces . Romain Tessera

We introduce a quantitative version of Property A in order to estimate the Lp-compressions of a metric measure space X. We obtain various estimates for spaces with sub-exponential volume growth. This quantitative property A also appears to be useful to yield upper bounds on the Lpdistortion of finite metric spaces. Namely, we obtain new optimal results for finite subsets of homogeneous Riemanni...

متن کامل

L p-SPACES FOR 0 < p < 1

In a first course in functional analysis, a great deal of time is spent with Banach spaces, especially the interaction between such spaces and their dual spaces. Banach spaces are a special type of topological vector space, and there are important topological vector spaces which do not lie in the Banach category, such as the Schwartz spaces. The most fundamental theorem about Banach spaces is t...

متن کامل

A Fast L-p Spike Alignment Metric

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. The metrization of the space of neural responses is an ongoing research program seeking to find natural ways to des...

متن کامل

SOBOLEV - POINCARÉ INEQUALITIES FOR p < 1

If Ω is a John domain (or certain more general domains), and |∇u| satisfies a certain mild condition, we show that u ∈ W 1,1 loc (Ω) satisfies a Sobolev-Poincaré inequality`R Ω |u − a| q ´ 1/q ≤ C `R Ω |∇u| p ´ 1/p for all 0 < p < 1, and appropriate q > 0. Our conclusion is new even when Ω is a ball.

متن کامل

Embeddings of Non-commutative L P -spaces in Non-commutative L 1 -spaces, 1 < P < 2

It will be shown that for 1 < p < 2 the Schatten p-class is isometrically isomor-phic to a subspace of the predual of a von Neumann algebra. Similar results hold for non-commutative L p (N;)-spaces deened by a semi-nite, normal, faithful trace on a von Neumann algebra N. The embeddings rely on a suitable notion of p-stable processes in the non-commutative setting.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Geometriae Dedicata

سال: 2008

ISSN: 0046-5755,1572-9168

DOI: 10.1007/s10711-008-9286-5